Рассчитать высоту треугольника со сторонами 117, 98 и 93
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{117 + 98 + 93}{2}} \normalsize = 154}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{154(154-117)(154-98)(154-93)}}{98}\normalsize = 90.0376339}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{154(154-117)(154-98)(154-93)}}{117}\normalsize = 75.4161378}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{154(154-117)(154-98)(154-93)}}{93}\normalsize = 94.8783669}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 117, 98 и 93 равна 90.0376339
Высота треугольника опущенная с вершины A на сторону BC со сторонами 117, 98 и 93 равна 75.4161378
Высота треугольника опущенная с вершины C на сторону AB со сторонами 117, 98 и 93 равна 94.8783669
Ссылка на результат
?n1=117&n2=98&n3=93
Найти высоту треугольника со сторонами 96, 75 и 47
Найти высоту треугольника со сторонами 84, 76 и 21
Найти высоту треугольника со сторонами 149, 95 и 88
Найти высоту треугольника со сторонами 102, 84 и 46
Найти высоту треугольника со сторонами 78, 61 и 59
Найти высоту треугольника со сторонами 148, 143 и 34
Найти высоту треугольника со сторонами 84, 76 и 21
Найти высоту треугольника со сторонами 149, 95 и 88
Найти высоту треугольника со сторонами 102, 84 и 46
Найти высоту треугольника со сторонами 78, 61 и 59
Найти высоту треугольника со сторонами 148, 143 и 34