Рассчитать высоту треугольника со сторонами 118, 100 и 24
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{118 + 100 + 24}{2}} \normalsize = 121}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{121(121-118)(121-100)(121-24)}}{100}\normalsize = 17.1980348}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{121(121-118)(121-100)(121-24)}}{118}\normalsize = 14.5746057}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{121(121-118)(121-100)(121-24)}}{24}\normalsize = 71.6584782}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 118, 100 и 24 равна 17.1980348
Высота треугольника опущенная с вершины A на сторону BC со сторонами 118, 100 и 24 равна 14.5746057
Высота треугольника опущенная с вершины C на сторону AB со сторонами 118, 100 и 24 равна 71.6584782
Ссылка на результат
?n1=118&n2=100&n3=24
Найти высоту треугольника со сторонами 125, 78 и 66
Найти высоту треугольника со сторонами 135, 84 и 77
Найти высоту треугольника со сторонами 118, 101 и 85
Найти высоту треугольника со сторонами 47, 43 и 37
Найти высоту треугольника со сторонами 132, 79 и 65
Найти высоту треугольника со сторонами 85, 72 и 67
Найти высоту треугольника со сторонами 135, 84 и 77
Найти высоту треугольника со сторонами 118, 101 и 85
Найти высоту треугольника со сторонами 47, 43 и 37
Найти высоту треугольника со сторонами 132, 79 и 65
Найти высоту треугольника со сторонами 85, 72 и 67