Рассчитать высоту треугольника со сторонами 118, 101 и 34
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{118 + 101 + 34}{2}} \normalsize = 126.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{126.5(126.5-118)(126.5-101)(126.5-34)}}{101}\normalsize = 31.5358328}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{126.5(126.5-118)(126.5-101)(126.5-34)}}{118}\normalsize = 26.9925348}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{126.5(126.5-118)(126.5-101)(126.5-34)}}{34}\normalsize = 93.6799738}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 118, 101 и 34 равна 31.5358328
Высота треугольника опущенная с вершины A на сторону BC со сторонами 118, 101 и 34 равна 26.9925348
Высота треугольника опущенная с вершины C на сторону AB со сторонами 118, 101 и 34 равна 93.6799738
Ссылка на результат
?n1=118&n2=101&n3=34
Найти высоту треугольника со сторонами 147, 98 и 97
Найти высоту треугольника со сторонами 64, 44 и 39
Найти высоту треугольника со сторонами 120, 73 и 65
Найти высоту треугольника со сторонами 87, 82 и 41
Найти высоту треугольника со сторонами 142, 115 и 54
Найти высоту треугольника со сторонами 40, 34 и 14
Найти высоту треугольника со сторонами 64, 44 и 39
Найти высоту треугольника со сторонами 120, 73 и 65
Найти высоту треугольника со сторонами 87, 82 и 41
Найти высоту треугольника со сторонами 142, 115 и 54
Найти высоту треугольника со сторонами 40, 34 и 14