Рассчитать высоту треугольника со сторонами 118, 104 и 57
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{118 + 104 + 57}{2}} \normalsize = 139.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{139.5(139.5-118)(139.5-104)(139.5-57)}}{104}\normalsize = 56.9959689}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{139.5(139.5-118)(139.5-104)(139.5-57)}}{118}\normalsize = 50.2337353}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{139.5(139.5-118)(139.5-104)(139.5-57)}}{57}\normalsize = 103.992645}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 118, 104 и 57 равна 56.9959689
Высота треугольника опущенная с вершины A на сторону BC со сторонами 118, 104 и 57 равна 50.2337353
Высота треугольника опущенная с вершины C на сторону AB со сторонами 118, 104 и 57 равна 103.992645
Ссылка на результат
?n1=118&n2=104&n3=57
Найти высоту треугольника со сторонами 70, 67 и 11
Найти высоту треугольника со сторонами 77, 76 и 30
Найти высоту треугольника со сторонами 128, 118 и 111
Найти высоту треугольника со сторонами 128, 127 и 76
Найти высоту треугольника со сторонами 114, 104 и 14
Найти высоту треугольника со сторонами 150, 133 и 118
Найти высоту треугольника со сторонами 77, 76 и 30
Найти высоту треугольника со сторонами 128, 118 и 111
Найти высоту треугольника со сторонами 128, 127 и 76
Найти высоту треугольника со сторонами 114, 104 и 14
Найти высоту треугольника со сторонами 150, 133 и 118