Рассчитать высоту треугольника со сторонами 118, 105 и 35
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{118 + 105 + 35}{2}} \normalsize = 129}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{129(129-118)(129-105)(129-35)}}{105}\normalsize = 34.0801456}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{129(129-118)(129-105)(129-35)}}{118}\normalsize = 30.3255533}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{129(129-118)(129-105)(129-35)}}{35}\normalsize = 102.240437}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 118, 105 и 35 равна 34.0801456
Высота треугольника опущенная с вершины A на сторону BC со сторонами 118, 105 и 35 равна 30.3255533
Высота треугольника опущенная с вершины C на сторону AB со сторонами 118, 105 и 35 равна 102.240437
Ссылка на результат
?n1=118&n2=105&n3=35
Найти высоту треугольника со сторонами 106, 102 и 79
Найти высоту треугольника со сторонами 110, 101 и 81
Найти высоту треугольника со сторонами 143, 92 и 69
Найти высоту треугольника со сторонами 146, 136 и 90
Найти высоту треугольника со сторонами 142, 105 и 64
Найти высоту треугольника со сторонами 138, 137 и 85
Найти высоту треугольника со сторонами 110, 101 и 81
Найти высоту треугольника со сторонами 143, 92 и 69
Найти высоту треугольника со сторонами 146, 136 и 90
Найти высоту треугольника со сторонами 142, 105 и 64
Найти высоту треугольника со сторонами 138, 137 и 85