Рассчитать высоту треугольника со сторонами 118, 105 и 98

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{118 + 105 + 98}{2}} \normalsize = 160.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{160.5(160.5-118)(160.5-105)(160.5-98)}}{105}\normalsize = 92.6529348}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{160.5(160.5-118)(160.5-105)(160.5-98)}}{118}\normalsize = 82.4454081}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{160.5(160.5-118)(160.5-105)(160.5-98)}}{98}\normalsize = 99.2710016}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 118, 105 и 98 равна 92.6529348
Высота треугольника опущенная с вершины A на сторону BC со сторонами 118, 105 и 98 равна 82.4454081
Высота треугольника опущенная с вершины C на сторону AB со сторонами 118, 105 и 98 равна 99.2710016
Ссылка на результат
?n1=118&n2=105&n3=98