Рассчитать высоту треугольника со сторонами 118, 114 и 111

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{118 + 114 + 111}{2}} \normalsize = 171.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{171.5(171.5-118)(171.5-114)(171.5-111)}}{114}\normalsize = 99.1164428}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{171.5(171.5-118)(171.5-114)(171.5-111)}}{118}\normalsize = 95.7565634}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{171.5(171.5-118)(171.5-114)(171.5-111)}}{111}\normalsize = 101.795266}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 118, 114 и 111 равна 99.1164428
Высота треугольника опущенная с вершины A на сторону BC со сторонами 118, 114 и 111 равна 95.7565634
Высота треугольника опущенная с вершины C на сторону AB со сторонами 118, 114 и 111 равна 101.795266
Ссылка на результат
?n1=118&n2=114&n3=111