Рассчитать высоту треугольника со сторонами 118, 114 и 12
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{118 + 114 + 12}{2}} \normalsize = 122}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{122(122-118)(122-114)(122-12)}}{114}\normalsize = 11.4967845}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{122(122-118)(122-114)(122-12)}}{118}\normalsize = 11.107063}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{122(122-118)(122-114)(122-12)}}{12}\normalsize = 109.219453}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 118, 114 и 12 равна 11.4967845
Высота треугольника опущенная с вершины A на сторону BC со сторонами 118, 114 и 12 равна 11.107063
Высота треугольника опущенная с вершины C на сторону AB со сторонами 118, 114 и 12 равна 109.219453
Ссылка на результат
?n1=118&n2=114&n3=12
Найти высоту треугольника со сторонами 130, 111 и 87
Найти высоту треугольника со сторонами 149, 89 и 77
Найти высоту треугольника со сторонами 97, 87 и 12
Найти высоту треугольника со сторонами 108, 65 и 65
Найти высоту треугольника со сторонами 144, 115 и 113
Найти высоту треугольника со сторонами 67, 58 и 58
Найти высоту треугольника со сторонами 149, 89 и 77
Найти высоту треугольника со сторонами 97, 87 и 12
Найти высоту треугольника со сторонами 108, 65 и 65
Найти высоту треугольника со сторонами 144, 115 и 113
Найти высоту треугольника со сторонами 67, 58 и 58