Рассчитать высоту треугольника со сторонами 118, 114 и 41
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{118 + 114 + 41}{2}} \normalsize = 136.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{136.5(136.5-118)(136.5-114)(136.5-41)}}{114}\normalsize = 40.8667668}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{136.5(136.5-118)(136.5-114)(136.5-41)}}{118}\normalsize = 39.4814526}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{136.5(136.5-118)(136.5-114)(136.5-41)}}{41}\normalsize = 113.629547}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 118, 114 и 41 равна 40.8667668
Высота треугольника опущенная с вершины A на сторону BC со сторонами 118, 114 и 41 равна 39.4814526
Высота треугольника опущенная с вершины C на сторону AB со сторонами 118, 114 и 41 равна 113.629547
Ссылка на результат
?n1=118&n2=114&n3=41
Найти высоту треугольника со сторонами 80, 77 и 38
Найти высоту треугольника со сторонами 93, 73 и 22
Найти высоту треугольника со сторонами 97, 56 и 56
Найти высоту треугольника со сторонами 86, 73 и 29
Найти высоту треугольника со сторонами 148, 134 и 125
Найти высоту треугольника со сторонами 67, 59 и 20
Найти высоту треугольника со сторонами 93, 73 и 22
Найти высоту треугольника со сторонами 97, 56 и 56
Найти высоту треугольника со сторонами 86, 73 и 29
Найти высоту треугольника со сторонами 148, 134 и 125
Найти высоту треугольника со сторонами 67, 59 и 20