Рассчитать высоту треугольника со сторонами 118, 86 и 33
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{118 + 86 + 33}{2}} \normalsize = 118.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{118.5(118.5-118)(118.5-86)(118.5-33)}}{86}\normalsize = 9.43627219}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{118.5(118.5-118)(118.5-86)(118.5-33)}}{118}\normalsize = 6.87728312}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{118.5(118.5-118)(118.5-86)(118.5-33)}}{33}\normalsize = 24.5914972}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 118, 86 и 33 равна 9.43627219
Высота треугольника опущенная с вершины A на сторону BC со сторонами 118, 86 и 33 равна 6.87728312
Высота треугольника опущенная с вершины C на сторону AB со сторонами 118, 86 и 33 равна 24.5914972
Ссылка на результат
?n1=118&n2=86&n3=33
Найти высоту треугольника со сторонами 98, 80 и 72
Найти высоту треугольника со сторонами 133, 73 и 67
Найти высоту треугольника со сторонами 61, 47 и 45
Найти высоту треугольника со сторонами 127, 122 и 29
Найти высоту треугольника со сторонами 66, 65 и 8
Найти высоту треугольника со сторонами 40, 40 и 39
Найти высоту треугольника со сторонами 133, 73 и 67
Найти высоту треугольника со сторонами 61, 47 и 45
Найти высоту треугольника со сторонами 127, 122 и 29
Найти высоту треугольника со сторонами 66, 65 и 8
Найти высоту треугольника со сторонами 40, 40 и 39