Рассчитать высоту треугольника со сторонами 118, 86 и 41
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{118 + 86 + 41}{2}} \normalsize = 122.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{122.5(122.5-118)(122.5-86)(122.5-41)}}{86}\normalsize = 29.7804381}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{122.5(122.5-118)(122.5-86)(122.5-41)}}{118}\normalsize = 21.7043871}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{122.5(122.5-118)(122.5-86)(122.5-41)}}{41}\normalsize = 62.4662848}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 118, 86 и 41 равна 29.7804381
Высота треугольника опущенная с вершины A на сторону BC со сторонами 118, 86 и 41 равна 21.7043871
Высота треугольника опущенная с вершины C на сторону AB со сторонами 118, 86 и 41 равна 62.4662848
Ссылка на результат
?n1=118&n2=86&n3=41
Найти высоту треугольника со сторонами 105, 88 и 49
Найти высоту треугольника со сторонами 68, 59 и 16
Найти высоту треугольника со сторонами 125, 112 и 76
Найти высоту треугольника со сторонами 106, 89 и 79
Найти высоту треугольника со сторонами 117, 103 и 16
Найти высоту треугольника со сторонами 119, 98 и 83
Найти высоту треугольника со сторонами 68, 59 и 16
Найти высоту треугольника со сторонами 125, 112 и 76
Найти высоту треугольника со сторонами 106, 89 и 79
Найти высоту треугольника со сторонами 117, 103 и 16
Найти высоту треугольника со сторонами 119, 98 и 83