Рассчитать высоту треугольника со сторонами 118, 90 и 56
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{118 + 90 + 56}{2}} \normalsize = 132}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{132(132-118)(132-90)(132-56)}}{90}\normalsize = 53.9721739}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{132(132-118)(132-90)(132-56)}}{118}\normalsize = 41.1652174}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{132(132-118)(132-90)(132-56)}}{56}\normalsize = 86.7409938}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 118, 90 и 56 равна 53.9721739
Высота треугольника опущенная с вершины A на сторону BC со сторонами 118, 90 и 56 равна 41.1652174
Высота треугольника опущенная с вершины C на сторону AB со сторонами 118, 90 и 56 равна 86.7409938
Ссылка на результат
?n1=118&n2=90&n3=56
Найти высоту треугольника со сторонами 52, 51 и 21
Найти высоту треугольника со сторонами 136, 124 и 42
Найти высоту треугольника со сторонами 31, 21 и 17
Найти высоту треугольника со сторонами 131, 119 и 73
Найти высоту треугольника со сторонами 120, 109 и 47
Найти высоту треугольника со сторонами 87, 68 и 50
Найти высоту треугольника со сторонами 136, 124 и 42
Найти высоту треугольника со сторонами 31, 21 и 17
Найти высоту треугольника со сторонами 131, 119 и 73
Найти высоту треугольника со сторонами 120, 109 и 47
Найти высоту треугольника со сторонами 87, 68 и 50