Рассчитать высоту треугольника со сторонами 118, 94 и 89
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{118 + 94 + 89}{2}} \normalsize = 150.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{150.5(150.5-118)(150.5-94)(150.5-89)}}{94}\normalsize = 87.7149973}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{150.5(150.5-118)(150.5-94)(150.5-89)}}{118}\normalsize = 69.8746589}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{150.5(150.5-118)(150.5-94)(150.5-89)}}{89}\normalsize = 92.6428061}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 118, 94 и 89 равна 87.7149973
Высота треугольника опущенная с вершины A на сторону BC со сторонами 118, 94 и 89 равна 69.8746589
Высота треугольника опущенная с вершины C на сторону AB со сторонами 118, 94 и 89 равна 92.6428061
Ссылка на результат
?n1=118&n2=94&n3=89
Найти высоту треугольника со сторонами 119, 98 и 91
Найти высоту треугольника со сторонами 88, 73 и 55
Найти высоту треугольника со сторонами 95, 78 и 25
Найти высоту треугольника со сторонами 45, 40 и 30
Найти высоту треугольника со сторонами 116, 92 и 85
Найти высоту треугольника со сторонами 115, 102 и 66
Найти высоту треугольника со сторонами 88, 73 и 55
Найти высоту треугольника со сторонами 95, 78 и 25
Найти высоту треугольника со сторонами 45, 40 и 30
Найти высоту треугольника со сторонами 116, 92 и 85
Найти высоту треугольника со сторонами 115, 102 и 66