Рассчитать высоту треугольника со сторонами 118, 95 и 82
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{118 + 95 + 82}{2}} \normalsize = 147.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{147.5(147.5-118)(147.5-95)(147.5-82)}}{95}\normalsize = 81.4354893}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{147.5(147.5-118)(147.5-95)(147.5-82)}}{118}\normalsize = 65.5624702}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{147.5(147.5-118)(147.5-95)(147.5-82)}}{82}\normalsize = 94.3459937}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 118, 95 и 82 равна 81.4354893
Высота треугольника опущенная с вершины A на сторону BC со сторонами 118, 95 и 82 равна 65.5624702
Высота треугольника опущенная с вершины C на сторону AB со сторонами 118, 95 и 82 равна 94.3459937
Ссылка на результат
?n1=118&n2=95&n3=82
Найти высоту треугольника со сторонами 115, 78 и 48
Найти высоту треугольника со сторонами 100, 99 и 10
Найти высоту треугольника со сторонами 141, 118 и 71
Найти высоту треугольника со сторонами 142, 130 и 57
Найти высоту треугольника со сторонами 148, 113 и 43
Найти высоту треугольника со сторонами 129, 111 и 66
Найти высоту треугольника со сторонами 100, 99 и 10
Найти высоту треугольника со сторонами 141, 118 и 71
Найти высоту треугольника со сторонами 142, 130 и 57
Найти высоту треугольника со сторонами 148, 113 и 43
Найти высоту треугольника со сторонами 129, 111 и 66