Рассчитать высоту треугольника со сторонами 118, 96 и 23

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{118 + 96 + 23}{2}} \normalsize = 118.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{118.5(118.5-118)(118.5-96)(118.5-23)}}{96}\normalsize = 7.43354346}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{118.5(118.5-118)(118.5-96)(118.5-23)}}{118}\normalsize = 6.04762858}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{118.5(118.5-118)(118.5-96)(118.5-23)}}{23}\normalsize = 31.026964}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 118, 96 и 23 равна 7.43354346
Высота треугольника опущенная с вершины A на сторону BC со сторонами 118, 96 и 23 равна 6.04762858
Высота треугольника опущенная с вершины C на сторону AB со сторонами 118, 96 и 23 равна 31.026964
Ссылка на результат
?n1=118&n2=96&n3=23