Рассчитать высоту треугольника со сторонами 118, 98 и 39
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{118 + 98 + 39}{2}} \normalsize = 127.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{127.5(127.5-118)(127.5-98)(127.5-39)}}{98}\normalsize = 36.291378}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{127.5(127.5-118)(127.5-98)(127.5-39)}}{118}\normalsize = 30.1402969}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{127.5(127.5-118)(127.5-98)(127.5-39)}}{39}\normalsize = 91.193719}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 118, 98 и 39 равна 36.291378
Высота треугольника опущенная с вершины A на сторону BC со сторонами 118, 98 и 39 равна 30.1402969
Высота треугольника опущенная с вершины C на сторону AB со сторонами 118, 98 и 39 равна 91.193719
Ссылка на результат
?n1=118&n2=98&n3=39
Найти высоту треугольника со сторонами 144, 129 и 79
Найти высоту треугольника со сторонами 140, 134 и 68
Найти высоту треугольника со сторонами 141, 122 и 122
Найти высоту треугольника со сторонами 63, 57 и 50
Найти высоту треугольника со сторонами 46, 44 и 24
Найти высоту треугольника со сторонами 105, 93 и 27
Найти высоту треугольника со сторонами 140, 134 и 68
Найти высоту треугольника со сторонами 141, 122 и 122
Найти высоту треугольника со сторонами 63, 57 и 50
Найти высоту треугольника со сторонами 46, 44 и 24
Найти высоту треугольника со сторонами 105, 93 и 27