Рассчитать высоту треугольника со сторонами 118, 98 и 90
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{118 + 98 + 90}{2}} \normalsize = 153}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{153(153-118)(153-98)(153-90)}}{98}\normalsize = 87.9093921}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{153(153-118)(153-98)(153-90)}}{118}\normalsize = 73.0094952}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{153(153-118)(153-98)(153-90)}}{90}\normalsize = 95.7235603}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 118, 98 и 90 равна 87.9093921
Высота треугольника опущенная с вершины A на сторону BC со сторонами 118, 98 и 90 равна 73.0094952
Высота треугольника опущенная с вершины C на сторону AB со сторонами 118, 98 и 90 равна 95.7235603
Ссылка на результат
?n1=118&n2=98&n3=90
Найти высоту треугольника со сторонами 136, 122 и 93
Найти высоту треугольника со сторонами 149, 112 и 96
Найти высоту треугольника со сторонами 105, 78 и 30
Найти высоту треугольника со сторонами 146, 116 и 85
Найти высоту треугольника со сторонами 79, 79 и 24
Найти высоту треугольника со сторонами 79, 77 и 64
Найти высоту треугольника со сторонами 149, 112 и 96
Найти высоту треугольника со сторонами 105, 78 и 30
Найти высоту треугольника со сторонами 146, 116 и 85
Найти высоту треугольника со сторонами 79, 79 и 24
Найти высоту треугольника со сторонами 79, 77 и 64