Рассчитать высоту треугольника со сторонами 118, 98 и 95
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{118 + 98 + 95}{2}} \normalsize = 155.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{155.5(155.5-118)(155.5-98)(155.5-95)}}{98}\normalsize = 91.9171098}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{155.5(155.5-118)(155.5-98)(155.5-95)}}{118}\normalsize = 76.3379387}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{155.5(155.5-118)(155.5-98)(155.5-95)}}{95}\normalsize = 94.8197554}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 118, 98 и 95 равна 91.9171098
Высота треугольника опущенная с вершины A на сторону BC со сторонами 118, 98 и 95 равна 76.3379387
Высота треугольника опущенная с вершины C на сторону AB со сторонами 118, 98 и 95 равна 94.8197554
Ссылка на результат
?n1=118&n2=98&n3=95
Найти высоту треугольника со сторонами 145, 130 и 98
Найти высоту треугольника со сторонами 111, 72 и 67
Найти высоту треугольника со сторонами 62, 58 и 52
Найти высоту треугольника со сторонами 103, 87 и 36
Найти высоту треугольника со сторонами 148, 100 и 77
Найти высоту треугольника со сторонами 130, 108 и 101
Найти высоту треугольника со сторонами 111, 72 и 67
Найти высоту треугольника со сторонами 62, 58 и 52
Найти высоту треугольника со сторонами 103, 87 и 36
Найти высоту треугольника со сторонами 148, 100 и 77
Найти высоту треугольника со сторонами 130, 108 и 101