Рассчитать высоту треугольника со сторонами 119, 100 и 97
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{119 + 100 + 97}{2}} \normalsize = 158}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{158(158-119)(158-100)(158-97)}}{100}\normalsize = 93.3834161}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{158(158-119)(158-100)(158-97)}}{119}\normalsize = 78.4734589}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{158(158-119)(158-100)(158-97)}}{97}\normalsize = 96.271563}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 119, 100 и 97 равна 93.3834161
Высота треугольника опущенная с вершины A на сторону BC со сторонами 119, 100 и 97 равна 78.4734589
Высота треугольника опущенная с вершины C на сторону AB со сторонами 119, 100 и 97 равна 96.271563
Ссылка на результат
?n1=119&n2=100&n3=97
Найти высоту треугольника со сторонами 146, 143 и 110
Найти высоту треугольника со сторонами 108, 75 и 45
Найти высоту треугольника со сторонами 107, 102 и 70
Найти высоту треугольника со сторонами 78, 54 и 32
Найти высоту треугольника со сторонами 114, 86 и 44
Найти высоту треугольника со сторонами 56, 43 и 21
Найти высоту треугольника со сторонами 108, 75 и 45
Найти высоту треугольника со сторонами 107, 102 и 70
Найти высоту треугольника со сторонами 78, 54 и 32
Найти высоту треугольника со сторонами 114, 86 и 44
Найти высоту треугольника со сторонами 56, 43 и 21