Рассчитать высоту треугольника со сторонами 119, 101 и 19
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{119 + 101 + 19}{2}} \normalsize = 119.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{119.5(119.5-119)(119.5-101)(119.5-19)}}{101}\normalsize = 6.60003854}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{119.5(119.5-119)(119.5-101)(119.5-19)}}{119}\normalsize = 5.60171339}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{119.5(119.5-119)(119.5-101)(119.5-19)}}{19}\normalsize = 35.0844154}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 119, 101 и 19 равна 6.60003854
Высота треугольника опущенная с вершины A на сторону BC со сторонами 119, 101 и 19 равна 5.60171339
Высота треугольника опущенная с вершины C на сторону AB со сторонами 119, 101 и 19 равна 35.0844154
Ссылка на результат
?n1=119&n2=101&n3=19
Найти высоту треугольника со сторонами 135, 97 и 62
Найти высоту треугольника со сторонами 112, 98 и 63
Найти высоту треугольника со сторонами 131, 98 и 97
Найти высоту треугольника со сторонами 123, 112 и 19
Найти высоту треугольника со сторонами 129, 92 и 74
Найти высоту треугольника со сторонами 116, 91 и 89
Найти высоту треугольника со сторонами 112, 98 и 63
Найти высоту треугольника со сторонами 131, 98 и 97
Найти высоту треугольника со сторонами 123, 112 и 19
Найти высоту треугольника со сторонами 129, 92 и 74
Найти высоту треугольника со сторонами 116, 91 и 89