Рассчитать высоту треугольника со сторонами 119, 105 и 104
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{119 + 105 + 104}{2}} \normalsize = 164}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{164(164-119)(164-105)(164-104)}}{105}\normalsize = 97.3577455}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{164(164-119)(164-105)(164-104)}}{119}\normalsize = 85.9038931}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{164(164-119)(164-105)(164-104)}}{104}\normalsize = 98.2938777}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 119, 105 и 104 равна 97.3577455
Высота треугольника опущенная с вершины A на сторону BC со сторонами 119, 105 и 104 равна 85.9038931
Высота треугольника опущенная с вершины C на сторону AB со сторонами 119, 105 и 104 равна 98.2938777
Ссылка на результат
?n1=119&n2=105&n3=104
Найти высоту треугольника со сторонами 44, 28 и 20
Найти высоту треугольника со сторонами 105, 104 и 6
Найти высоту треугольника со сторонами 95, 60 и 41
Найти высоту треугольника со сторонами 31, 28 и 15
Найти высоту треугольника со сторонами 83, 74 и 13
Найти высоту треугольника со сторонами 72, 43 и 34
Найти высоту треугольника со сторонами 105, 104 и 6
Найти высоту треугольника со сторонами 95, 60 и 41
Найти высоту треугольника со сторонами 31, 28 и 15
Найти высоту треугольника со сторонами 83, 74 и 13
Найти высоту треугольника со сторонами 72, 43 и 34