Рассчитать высоту треугольника со сторонами 119, 106 и 103
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{119 + 106 + 103}{2}} \normalsize = 164}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{164(164-119)(164-106)(164-103)}}{106}\normalsize = 96.4120296}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{164(164-119)(164-106)(164-103)}}{119}\normalsize = 85.879623}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{164(164-119)(164-106)(164-103)}}{103}\normalsize = 99.220147}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 119, 106 и 103 равна 96.4120296
Высота треугольника опущенная с вершины A на сторону BC со сторонами 119, 106 и 103 равна 85.879623
Высота треугольника опущенная с вершины C на сторону AB со сторонами 119, 106 и 103 равна 99.220147
Ссылка на результат
?n1=119&n2=106&n3=103
Найти высоту треугольника со сторонами 109, 66 и 57
Найти высоту треугольника со сторонами 136, 128 и 117
Найти высоту треугольника со сторонами 129, 129 и 123
Найти высоту треугольника со сторонами 126, 124 и 93
Найти высоту треугольника со сторонами 105, 101 и 41
Найти высоту треугольника со сторонами 141, 120 и 52
Найти высоту треугольника со сторонами 136, 128 и 117
Найти высоту треугольника со сторонами 129, 129 и 123
Найти высоту треугольника со сторонами 126, 124 и 93
Найти высоту треугольника со сторонами 105, 101 и 41
Найти высоту треугольника со сторонами 141, 120 и 52