Рассчитать высоту треугольника со сторонами 119, 108 и 51
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{119 + 108 + 51}{2}} \normalsize = 139}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{139(139-119)(139-108)(139-51)}}{108}\normalsize = 50.9977272}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{139(139-119)(139-108)(139-51)}}{119}\normalsize = 46.2836515}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{139(139-119)(139-108)(139-51)}}{51}\normalsize = 107.995187}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 119, 108 и 51 равна 50.9977272
Высота треугольника опущенная с вершины A на сторону BC со сторонами 119, 108 и 51 равна 46.2836515
Высота треугольника опущенная с вершины C на сторону AB со сторонами 119, 108 и 51 равна 107.995187
Ссылка на результат
?n1=119&n2=108&n3=51
Найти высоту треугольника со сторонами 135, 115 и 74
Найти высоту треугольника со сторонами 144, 113 и 61
Найти высоту треугольника со сторонами 127, 101 и 66
Найти высоту треугольника со сторонами 56, 44 и 20
Найти высоту треугольника со сторонами 142, 133 и 15
Найти высоту треугольника со сторонами 147, 142 и 38
Найти высоту треугольника со сторонами 144, 113 и 61
Найти высоту треугольника со сторонами 127, 101 и 66
Найти высоту треугольника со сторонами 56, 44 и 20
Найти высоту треугольника со сторонами 142, 133 и 15
Найти высоту треугольника со сторонами 147, 142 и 38