Рассчитать высоту треугольника со сторонами 119, 109 и 38
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{119 + 109 + 38}{2}} \normalsize = 133}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{133(133-119)(133-109)(133-38)}}{109}\normalsize = 37.8060026}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{133(133-119)(133-109)(133-38)}}{119}\normalsize = 34.6290276}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{133(133-119)(133-109)(133-38)}}{38}\normalsize = 108.443534}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 119, 109 и 38 равна 37.8060026
Высота треугольника опущенная с вершины A на сторону BC со сторонами 119, 109 и 38 равна 34.6290276
Высота треугольника опущенная с вершины C на сторону AB со сторонами 119, 109 и 38 равна 108.443534
Ссылка на результат
?n1=119&n2=109&n3=38
Найти высоту треугольника со сторонами 124, 94 и 50
Найти высоту треугольника со сторонами 135, 127 и 14
Найти высоту треугольника со сторонами 103, 70 и 57
Найти высоту треугольника со сторонами 111, 110 и 41
Найти высоту треугольника со сторонами 103, 66 и 55
Найти высоту треугольника со сторонами 77, 53 и 27
Найти высоту треугольника со сторонами 135, 127 и 14
Найти высоту треугольника со сторонами 103, 70 и 57
Найти высоту треугольника со сторонами 111, 110 и 41
Найти высоту треугольника со сторонами 103, 66 и 55
Найти высоту треугольника со сторонами 77, 53 и 27