Рассчитать высоту треугольника со сторонами 119, 113 и 67

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{119 + 113 + 67}{2}} \normalsize = 149.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{149.5(149.5-119)(149.5-113)(149.5-67)}}{113}\normalsize = 65.5836336}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{149.5(149.5-119)(149.5-113)(149.5-67)}}{119}\normalsize = 62.2768958}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{149.5(149.5-119)(149.5-113)(149.5-67)}}{67}\normalsize = 110.611203}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 119, 113 и 67 равна 65.5836336
Высота треугольника опущенная с вершины A на сторону BC со сторонами 119, 113 и 67 равна 62.2768958
Высота треугольника опущенная с вершины C на сторону AB со сторонами 119, 113 и 67 равна 110.611203
Ссылка на результат
?n1=119&n2=113&n3=67