Рассчитать высоту треугольника со сторонами 119, 116 и 54
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{119 + 116 + 54}{2}} \normalsize = 144.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{144.5(144.5-119)(144.5-116)(144.5-54)}}{116}\normalsize = 53.152383}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{144.5(144.5-119)(144.5-116)(144.5-54)}}{119}\normalsize = 51.8124069}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{144.5(144.5-119)(144.5-116)(144.5-54)}}{54}\normalsize = 114.179193}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 119, 116 и 54 равна 53.152383
Высота треугольника опущенная с вершины A на сторону BC со сторонами 119, 116 и 54 равна 51.8124069
Высота треугольника опущенная с вершины C на сторону AB со сторонами 119, 116 и 54 равна 114.179193
Ссылка на результат
?n1=119&n2=116&n3=54
Найти высоту треугольника со сторонами 129, 80 и 67
Найти высоту треугольника со сторонами 116, 97 и 83
Найти высоту треугольника со сторонами 147, 117 и 71
Найти высоту треугольника со сторонами 98, 93 и 13
Найти высоту треугольника со сторонами 138, 125 и 41
Найти высоту треугольника со сторонами 135, 134 и 110
Найти высоту треугольника со сторонами 116, 97 и 83
Найти высоту треугольника со сторонами 147, 117 и 71
Найти высоту треугольника со сторонами 98, 93 и 13
Найти высоту треугольника со сторонами 138, 125 и 41
Найти высоту треугольника со сторонами 135, 134 и 110