Рассчитать высоту треугольника со сторонами 119, 118 и 113
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{119 + 118 + 113}{2}} \normalsize = 175}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{175(175-119)(175-118)(175-113)}}{118}\normalsize = 99.7457267}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{175(175-119)(175-118)(175-113)}}{119}\normalsize = 98.9075273}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{175(175-119)(175-118)(175-113)}}{113}\normalsize = 104.159254}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 119, 118 и 113 равна 99.7457267
Высота треугольника опущенная с вершины A на сторону BC со сторонами 119, 118 и 113 равна 98.9075273
Высота треугольника опущенная с вершины C на сторону AB со сторонами 119, 118 и 113 равна 104.159254
Ссылка на результат
?n1=119&n2=118&n3=113
Найти высоту треугольника со сторонами 145, 139 и 120
Найти высоту треугольника со сторонами 50, 46 и 9
Найти высоту треугольника со сторонами 119, 93 и 44
Найти высоту треугольника со сторонами 126, 125 и 77
Найти высоту треугольника со сторонами 19, 17 и 11
Найти высоту треугольника со сторонами 146, 137 и 13
Найти высоту треугольника со сторонами 50, 46 и 9
Найти высоту треугольника со сторонами 119, 93 и 44
Найти высоту треугольника со сторонами 126, 125 и 77
Найти высоту треугольника со сторонами 19, 17 и 11
Найти высоту треугольника со сторонами 146, 137 и 13