Рассчитать высоту треугольника со сторонами 119, 71 и 69
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{119 + 71 + 69}{2}} \normalsize = 129.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{129.5(129.5-119)(129.5-71)(129.5-69)}}{71}\normalsize = 61.795493}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{129.5(129.5-119)(129.5-71)(129.5-69)}}{119}\normalsize = 36.8695798}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{129.5(129.5-119)(129.5-71)(129.5-69)}}{69}\normalsize = 63.5866667}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 119, 71 и 69 равна 61.795493
Высота треугольника опущенная с вершины A на сторону BC со сторонами 119, 71 и 69 равна 36.8695798
Высота треугольника опущенная с вершины C на сторону AB со сторонами 119, 71 и 69 равна 63.5866667
Ссылка на результат
?n1=119&n2=71&n3=69
Найти высоту треугольника со сторонами 117, 79 и 59
Найти высоту треугольника со сторонами 126, 123 и 117
Найти высоту треугольника со сторонами 107, 101 и 23
Найти высоту треугольника со сторонами 139, 78 и 71
Найти высоту треугольника со сторонами 128, 101 и 46
Найти высоту треугольника со сторонами 67, 66 и 10
Найти высоту треугольника со сторонами 126, 123 и 117
Найти высоту треугольника со сторонами 107, 101 и 23
Найти высоту треугольника со сторонами 139, 78 и 71
Найти высоту треугольника со сторонами 128, 101 и 46
Найти высоту треугольника со сторонами 67, 66 и 10