Рассчитать высоту треугольника со сторонами 119, 77 и 46
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{119 + 77 + 46}{2}} \normalsize = 121}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{121(121-119)(121-77)(121-46)}}{77}\normalsize = 23.2115383}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{121(121-119)(121-77)(121-46)}}{119}\normalsize = 15.0192307}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{121(121-119)(121-77)(121-46)}}{46}\normalsize = 38.8540967}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 119, 77 и 46 равна 23.2115383
Высота треугольника опущенная с вершины A на сторону BC со сторонами 119, 77 и 46 равна 15.0192307
Высота треугольника опущенная с вершины C на сторону AB со сторонами 119, 77 и 46 равна 38.8540967
Ссылка на результат
?n1=119&n2=77&n3=46
Найти высоту треугольника со сторонами 148, 112 и 55
Найти высоту треугольника со сторонами 96, 65 и 40
Найти высоту треугольника со сторонами 148, 95 и 67
Найти высоту треугольника со сторонами 131, 89 и 47
Найти высоту треугольника со сторонами 111, 71 и 48
Найти высоту треугольника со сторонами 75, 67 и 20
Найти высоту треугольника со сторонами 96, 65 и 40
Найти высоту треугольника со сторонами 148, 95 и 67
Найти высоту треугольника со сторонами 131, 89 и 47
Найти высоту треугольника со сторонами 111, 71 и 48
Найти высоту треугольника со сторонами 75, 67 и 20