Рассчитать высоту треугольника со сторонами 119, 95 и 46
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{119 + 95 + 46}{2}} \normalsize = 130}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{130(130-119)(130-95)(130-46)}}{95}\normalsize = 43.166623}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{130(130-119)(130-95)(130-46)}}{119}\normalsize = 34.4607494}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{130(130-119)(130-95)(130-46)}}{46}\normalsize = 89.1484605}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 119, 95 и 46 равна 43.166623
Высота треугольника опущенная с вершины A на сторону BC со сторонами 119, 95 и 46 равна 34.4607494
Высота треугольника опущенная с вершины C на сторону AB со сторонами 119, 95 и 46 равна 89.1484605
Ссылка на результат
?n1=119&n2=95&n3=46
Найти высоту треугольника со сторонами 133, 106 и 88
Найти высоту треугольника со сторонами 135, 130 и 56
Найти высоту треугольника со сторонами 86, 58 и 41
Найти высоту треугольника со сторонами 26, 26 и 17
Найти высоту треугольника со сторонами 122, 113 и 37
Найти высоту треугольника со сторонами 97, 95 и 53
Найти высоту треугольника со сторонами 135, 130 и 56
Найти высоту треугольника со сторонами 86, 58 и 41
Найти высоту треугольника со сторонами 26, 26 и 17
Найти высоту треугольника со сторонами 122, 113 и 37
Найти высоту треугольника со сторонами 97, 95 и 53