Рассчитать высоту треугольника со сторонами 119, 96 и 69
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{119 + 96 + 69}{2}} \normalsize = 142}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{142(142-119)(142-96)(142-69)}}{96}\normalsize = 68.9933446}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{142(142-119)(142-96)(142-69)}}{119}\normalsize = 55.6584965}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{142(142-119)(142-96)(142-69)}}{69}\normalsize = 95.9907403}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 119, 96 и 69 равна 68.9933446
Высота треугольника опущенная с вершины A на сторону BC со сторонами 119, 96 и 69 равна 55.6584965
Высота треугольника опущенная с вершины C на сторону AB со сторонами 119, 96 и 69 равна 95.9907403
Ссылка на результат
?n1=119&n2=96&n3=69
Найти высоту треугольника со сторонами 122, 82 и 65
Найти высоту треугольника со сторонами 139, 120 и 113
Найти высоту треугольника со сторонами 121, 88 и 34
Найти высоту треугольника со сторонами 150, 143 и 93
Найти высоту треугольника со сторонами 86, 74 и 17
Найти высоту треугольника со сторонами 147, 125 и 58
Найти высоту треугольника со сторонами 139, 120 и 113
Найти высоту треугольника со сторонами 121, 88 и 34
Найти высоту треугольника со сторонами 150, 143 и 93
Найти высоту треугольника со сторонами 86, 74 и 17
Найти высоту треугольника со сторонами 147, 125 и 58