Рассчитать высоту треугольника со сторонами 119, 97 и 73
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{119 + 97 + 73}{2}} \normalsize = 144.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{144.5(144.5-119)(144.5-97)(144.5-73)}}{97}\normalsize = 72.9393856}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{144.5(144.5-119)(144.5-97)(144.5-73)}}{119}\normalsize = 59.4547933}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{144.5(144.5-119)(144.5-97)(144.5-73)}}{73}\normalsize = 96.9194576}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 119, 97 и 73 равна 72.9393856
Высота треугольника опущенная с вершины A на сторону BC со сторонами 119, 97 и 73 равна 59.4547933
Высота треугольника опущенная с вершины C на сторону AB со сторонами 119, 97 и 73 равна 96.9194576
Ссылка на результат
?n1=119&n2=97&n3=73
Найти высоту треугольника со сторонами 130, 121 и 36
Найти высоту треугольника со сторонами 138, 117 и 70
Найти высоту треугольника со сторонами 134, 106 и 81
Найти высоту треугольника со сторонами 128, 99 и 37
Найти высоту треугольника со сторонами 129, 100 и 68
Найти высоту треугольника со сторонами 150, 147 и 71
Найти высоту треугольника со сторонами 138, 117 и 70
Найти высоту треугольника со сторонами 134, 106 и 81
Найти высоту треугольника со сторонами 128, 99 и 37
Найти высоту треугольника со сторонами 129, 100 и 68
Найти высоту треугольника со сторонами 150, 147 и 71