Рассчитать высоту треугольника со сторонами 120, 102 и 47
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{120 + 102 + 47}{2}} \normalsize = 134.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{134.5(134.5-120)(134.5-102)(134.5-47)}}{102}\normalsize = 46.1764641}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{134.5(134.5-120)(134.5-102)(134.5-47)}}{120}\normalsize = 39.2499945}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{134.5(134.5-120)(134.5-102)(134.5-47)}}{47}\normalsize = 100.212752}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 120, 102 и 47 равна 46.1764641
Высота треугольника опущенная с вершины A на сторону BC со сторонами 120, 102 и 47 равна 39.2499945
Высота треугольника опущенная с вершины C на сторону AB со сторонами 120, 102 и 47 равна 100.212752
Ссылка на результат
?n1=120&n2=102&n3=47
Найти высоту треугольника со сторонами 71, 47 и 29
Найти высоту треугольника со сторонами 148, 120 и 70
Найти высоту треугольника со сторонами 86, 82 и 8
Найти высоту треугольника со сторонами 113, 78 и 73
Найти высоту треугольника со сторонами 138, 86 и 69
Найти высоту треугольника со сторонами 139, 127 и 20
Найти высоту треугольника со сторонами 148, 120 и 70
Найти высоту треугольника со сторонами 86, 82 и 8
Найти высоту треугольника со сторонами 113, 78 и 73
Найти высоту треугольника со сторонами 138, 86 и 69
Найти высоту треугольника со сторонами 139, 127 и 20