Рассчитать высоту треугольника со сторонами 120, 103 и 56
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{120 + 103 + 56}{2}} \normalsize = 139.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{139.5(139.5-120)(139.5-103)(139.5-56)}}{103}\normalsize = 55.9096599}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{139.5(139.5-120)(139.5-103)(139.5-56)}}{120}\normalsize = 47.9891247}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{139.5(139.5-120)(139.5-103)(139.5-56)}}{56}\normalsize = 102.833839}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 120, 103 и 56 равна 55.9096599
Высота треугольника опущенная с вершины A на сторону BC со сторонами 120, 103 и 56 равна 47.9891247
Высота треугольника опущенная с вершины C на сторону AB со сторонами 120, 103 и 56 равна 102.833839
Ссылка на результат
?n1=120&n2=103&n3=56
Найти высоту треугольника со сторонами 107, 69 и 43
Найти высоту треугольника со сторонами 59, 54 и 30
Найти высоту треугольника со сторонами 95, 74 и 23
Найти высоту треугольника со сторонами 108, 93 и 86
Найти высоту треугольника со сторонами 101, 79 и 75
Найти высоту треугольника со сторонами 147, 136 и 66
Найти высоту треугольника со сторонами 59, 54 и 30
Найти высоту треугольника со сторонами 95, 74 и 23
Найти высоту треугольника со сторонами 108, 93 и 86
Найти высоту треугольника со сторонами 101, 79 и 75
Найти высоту треугольника со сторонами 147, 136 и 66