Рассчитать высоту треугольника со сторонами 120, 105 и 79
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{120 + 105 + 79}{2}} \normalsize = 152}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{152(152-120)(152-105)(152-79)}}{105}\normalsize = 77.8122259}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{152(152-120)(152-105)(152-79)}}{120}\normalsize = 68.0856976}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{152(152-120)(152-105)(152-79)}}{79}\normalsize = 103.421313}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 120, 105 и 79 равна 77.8122259
Высота треугольника опущенная с вершины A на сторону BC со сторонами 120, 105 и 79 равна 68.0856976
Высота треугольника опущенная с вершины C на сторону AB со сторонами 120, 105 и 79 равна 103.421313
Ссылка на результат
?n1=120&n2=105&n3=79
Найти высоту треугольника со сторонами 125, 87 и 79
Найти высоту треугольника со сторонами 71, 49 и 23
Найти высоту треугольника со сторонами 94, 79 и 65
Найти высоту треугольника со сторонами 121, 81 и 75
Найти высоту треугольника со сторонами 84, 74 и 61
Найти высоту треугольника со сторонами 113, 69 и 48
Найти высоту треугольника со сторонами 71, 49 и 23
Найти высоту треугольника со сторонами 94, 79 и 65
Найти высоту треугольника со сторонами 121, 81 и 75
Найти высоту треугольника со сторонами 84, 74 и 61
Найти высоту треугольника со сторонами 113, 69 и 48