Рассчитать высоту треугольника со сторонами 120, 105 и 99
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{120 + 105 + 99}{2}} \normalsize = 162}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{162(162-120)(162-105)(162-99)}}{105}\normalsize = 94.1522172}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{162(162-120)(162-105)(162-99)}}{120}\normalsize = 82.38319}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{162(162-120)(162-105)(162-99)}}{99}\normalsize = 99.8584122}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 120, 105 и 99 равна 94.1522172
Высота треугольника опущенная с вершины A на сторону BC со сторонами 120, 105 и 99 равна 82.38319
Высота треугольника опущенная с вершины C на сторону AB со сторонами 120, 105 и 99 равна 99.8584122
Ссылка на результат
?n1=120&n2=105&n3=99
Найти высоту треугольника со сторонами 141, 137 и 59
Найти высоту треугольника со сторонами 98, 61 и 60
Найти высоту треугольника со сторонами 114, 81 и 44
Найти высоту треугольника со сторонами 64, 43 и 39
Найти высоту треугольника со сторонами 131, 90 и 56
Найти высоту треугольника со сторонами 87, 68 и 41
Найти высоту треугольника со сторонами 98, 61 и 60
Найти высоту треугольника со сторонами 114, 81 и 44
Найти высоту треугольника со сторонами 64, 43 и 39
Найти высоту треугольника со сторонами 131, 90 и 56
Найти высоту треугольника со сторонами 87, 68 и 41