Рассчитать высоту треугольника со сторонами 120, 106 и 55
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{120 + 106 + 55}{2}} \normalsize = 140.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{140.5(140.5-120)(140.5-106)(140.5-55)}}{106}\normalsize = 54.9960918}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{140.5(140.5-120)(140.5-106)(140.5-55)}}{120}\normalsize = 48.5798811}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{140.5(140.5-120)(140.5-106)(140.5-55)}}{55}\normalsize = 105.992468}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 120, 106 и 55 равна 54.9960918
Высота треугольника опущенная с вершины A на сторону BC со сторонами 120, 106 и 55 равна 48.5798811
Высота треугольника опущенная с вершины C на сторону AB со сторонами 120, 106 и 55 равна 105.992468
Ссылка на результат
?n1=120&n2=106&n3=55
Найти высоту треугольника со сторонами 110, 82 и 80
Найти высоту треугольника со сторонами 135, 124 и 92
Найти высоту треугольника со сторонами 140, 99 и 79
Найти высоту треугольника со сторонами 93, 89 и 46
Найти высоту треугольника со сторонами 138, 118 и 88
Найти высоту треугольника со сторонами 74, 61 и 15
Найти высоту треугольника со сторонами 135, 124 и 92
Найти высоту треугольника со сторонами 140, 99 и 79
Найти высоту треугольника со сторонами 93, 89 и 46
Найти высоту треугольника со сторонами 138, 118 и 88
Найти высоту треугольника со сторонами 74, 61 и 15