Рассчитать высоту треугольника со сторонами 120, 109 и 87
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{120 + 109 + 87}{2}} \normalsize = 158}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{158(158-120)(158-109)(158-87)}}{109}\normalsize = 83.8592654}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{158(158-120)(158-109)(158-87)}}{120}\normalsize = 76.1721661}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{158(158-120)(158-109)(158-87)}}{87}\normalsize = 105.065057}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 120, 109 и 87 равна 83.8592654
Высота треугольника опущенная с вершины A на сторону BC со сторонами 120, 109 и 87 равна 76.1721661
Высота треугольника опущенная с вершины C на сторону AB со сторонами 120, 109 и 87 равна 105.065057
Ссылка на результат
?n1=120&n2=109&n3=87
Найти высоту треугольника со сторонами 122, 120 и 7
Найти высоту треугольника со сторонами 146, 123 и 61
Найти высоту треугольника со сторонами 84, 50 и 48
Найти высоту треугольника со сторонами 144, 144 и 98
Найти высоту треугольника со сторонами 90, 83 и 69
Найти высоту треугольника со сторонами 99, 65 и 40
Найти высоту треугольника со сторонами 146, 123 и 61
Найти высоту треугольника со сторонами 84, 50 и 48
Найти высоту треугольника со сторонами 144, 144 и 98
Найти высоту треугольника со сторонами 90, 83 и 69
Найти высоту треугольника со сторонами 99, 65 и 40