Рассчитать высоту треугольника со сторонами 120, 109 и 95
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{120 + 109 + 95}{2}} \normalsize = 162}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{162(162-120)(162-109)(162-95)}}{109}\normalsize = 90.1905398}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{162(162-120)(162-109)(162-95)}}{120}\normalsize = 81.9230737}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{162(162-120)(162-109)(162-95)}}{95}\normalsize = 103.481777}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 120, 109 и 95 равна 90.1905398
Высота треугольника опущенная с вершины A на сторону BC со сторонами 120, 109 и 95 равна 81.9230737
Высота треугольника опущенная с вершины C на сторону AB со сторонами 120, 109 и 95 равна 103.481777
Ссылка на результат
?n1=120&n2=109&n3=95
Найти высоту треугольника со сторонами 83, 54 и 50
Найти высоту треугольника со сторонами 113, 104 и 10
Найти высоту треугольника со сторонами 143, 133 и 58
Найти высоту треугольника со сторонами 102, 99 и 42
Найти высоту треугольника со сторонами 125, 102 и 57
Найти высоту треугольника со сторонами 129, 96 и 85
Найти высоту треугольника со сторонами 113, 104 и 10
Найти высоту треугольника со сторонами 143, 133 и 58
Найти высоту треугольника со сторонами 102, 99 и 42
Найти высоту треугольника со сторонами 125, 102 и 57
Найти высоту треугольника со сторонами 129, 96 и 85