Рассчитать высоту треугольника со сторонами 120, 111 и 68
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{120 + 111 + 68}{2}} \normalsize = 149.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{149.5(149.5-120)(149.5-111)(149.5-68)}}{111}\normalsize = 67.0266927}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{149.5(149.5-120)(149.5-111)(149.5-68)}}{120}\normalsize = 61.9996907}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{149.5(149.5-120)(149.5-111)(149.5-68)}}{68}\normalsize = 109.411219}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 120, 111 и 68 равна 67.0266927
Высота треугольника опущенная с вершины A на сторону BC со сторонами 120, 111 и 68 равна 61.9996907
Высота треугольника опущенная с вершины C на сторону AB со сторонами 120, 111 и 68 равна 109.411219
Ссылка на результат
?n1=120&n2=111&n3=68
Найти высоту треугольника со сторонами 105, 68 и 52
Найти высоту треугольника со сторонами 70, 61 и 57
Найти высоту треугольника со сторонами 148, 126 и 27
Найти высоту треугольника со сторонами 110, 77 и 49
Найти высоту треугольника со сторонами 57, 45 и 37
Найти высоту треугольника со сторонами 131, 114 и 65
Найти высоту треугольника со сторонами 70, 61 и 57
Найти высоту треугольника со сторонами 148, 126 и 27
Найти высоту треугольника со сторонами 110, 77 и 49
Найти высоту треугольника со сторонами 57, 45 и 37
Найти высоту треугольника со сторонами 131, 114 и 65