Рассчитать высоту треугольника со сторонами 120, 111 и 85
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{120 + 111 + 85}{2}} \normalsize = 158}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{158(158-120)(158-111)(158-85)}}{111}\normalsize = 81.7782321}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{158(158-120)(158-111)(158-85)}}{120}\normalsize = 75.6448647}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{158(158-120)(158-111)(158-85)}}{85}\normalsize = 106.79275}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 120, 111 и 85 равна 81.7782321
Высота треугольника опущенная с вершины A на сторону BC со сторонами 120, 111 и 85 равна 75.6448647
Высота треугольника опущенная с вершины C на сторону AB со сторонами 120, 111 и 85 равна 106.79275
Ссылка на результат
?n1=120&n2=111&n3=85
Найти высоту треугольника со сторонами 94, 94 и 78
Найти высоту треугольника со сторонами 95, 67 и 38
Найти высоту треугольника со сторонами 148, 139 и 56
Найти высоту треугольника со сторонами 138, 120 и 39
Найти высоту треугольника со сторонами 131, 123 и 106
Найти высоту треугольника со сторонами 112, 107 и 71
Найти высоту треугольника со сторонами 95, 67 и 38
Найти высоту треугольника со сторонами 148, 139 и 56
Найти высоту треугольника со сторонами 138, 120 и 39
Найти высоту треугольника со сторонами 131, 123 и 106
Найти высоту треугольника со сторонами 112, 107 и 71