Рассчитать высоту треугольника со сторонами 120, 114 и 29
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{120 + 114 + 29}{2}} \normalsize = 131.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{131.5(131.5-120)(131.5-114)(131.5-29)}}{114}\normalsize = 28.8946806}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{131.5(131.5-120)(131.5-114)(131.5-29)}}{120}\normalsize = 27.4499466}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{131.5(131.5-120)(131.5-114)(131.5-29)}}{29}\normalsize = 113.585986}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 120, 114 и 29 равна 28.8946806
Высота треугольника опущенная с вершины A на сторону BC со сторонами 120, 114 и 29 равна 27.4499466
Высота треугольника опущенная с вершины C на сторону AB со сторонами 120, 114 и 29 равна 113.585986
Ссылка на результат
?n1=120&n2=114&n3=29
Найти высоту треугольника со сторонами 107, 92 и 61
Найти высоту треугольника со сторонами 133, 119 и 78
Найти высоту треугольника со сторонами 126, 109 и 33
Найти высоту треугольника со сторонами 101, 96 и 21
Найти высоту треугольника со сторонами 66, 43 и 36
Найти высоту треугольника со сторонами 128, 96 и 75
Найти высоту треугольника со сторонами 133, 119 и 78
Найти высоту треугольника со сторонами 126, 109 и 33
Найти высоту треугольника со сторонами 101, 96 и 21
Найти высоту треугольника со сторонами 66, 43 и 36
Найти высоту треугольника со сторонами 128, 96 и 75