Рассчитать высоту треугольника со сторонами 120, 115 и 109
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{120 + 115 + 109}{2}} \normalsize = 172}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{172(172-120)(172-115)(172-109)}}{115}\normalsize = 98.561148}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{172(172-120)(172-115)(172-109)}}{120}\normalsize = 94.4544335}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{172(172-120)(172-115)(172-109)}}{109}\normalsize = 103.986532}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 120, 115 и 109 равна 98.561148
Высота треугольника опущенная с вершины A на сторону BC со сторонами 120, 115 и 109 равна 94.4544335
Высота треугольника опущенная с вершины C на сторону AB со сторонами 120, 115 и 109 равна 103.986532
Ссылка на результат
?n1=120&n2=115&n3=109
Найти высоту треугольника со сторонами 91, 72 и 40
Найти высоту треугольника со сторонами 148, 146 и 72
Найти высоту треугольника со сторонами 120, 107 и 89
Найти высоту треугольника со сторонами 150, 138 и 125
Найти высоту треугольника со сторонами 112, 109 и 26
Найти высоту треугольника со сторонами 120, 111 и 90
Найти высоту треугольника со сторонами 148, 146 и 72
Найти высоту треугольника со сторонами 120, 107 и 89
Найти высоту треугольника со сторонами 150, 138 и 125
Найти высоту треугольника со сторонами 112, 109 и 26
Найти высоту треугольника со сторонами 120, 111 и 90