Рассчитать высоту треугольника со сторонами 120, 116 и 81
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{120 + 116 + 81}{2}} \normalsize = 158.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{158.5(158.5-120)(158.5-116)(158.5-81)}}{116}\normalsize = 77.2969434}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{158.5(158.5-120)(158.5-116)(158.5-81)}}{120}\normalsize = 74.7203786}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{158.5(158.5-120)(158.5-116)(158.5-81)}}{81}\normalsize = 110.696857}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 120, 116 и 81 равна 77.2969434
Высота треугольника опущенная с вершины A на сторону BC со сторонами 120, 116 и 81 равна 74.7203786
Высота треугольника опущенная с вершины C на сторону AB со сторонами 120, 116 и 81 равна 110.696857
Ссылка на результат
?n1=120&n2=116&n3=81
Найти высоту треугольника со сторонами 150, 118 и 69
Найти высоту треугольника со сторонами 74, 59 и 27
Найти высоту треугольника со сторонами 144, 121 и 26
Найти высоту треугольника со сторонами 126, 122 и 111
Найти высоту треугольника со сторонами 106, 96 и 55
Найти высоту треугольника со сторонами 113, 74 и 48
Найти высоту треугольника со сторонами 74, 59 и 27
Найти высоту треугольника со сторонами 144, 121 и 26
Найти высоту треугольника со сторонами 126, 122 и 111
Найти высоту треугольника со сторонами 106, 96 и 55
Найти высоту треугольника со сторонами 113, 74 и 48