Рассчитать высоту треугольника со сторонами 120, 118 и 67
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{120 + 118 + 67}{2}} \normalsize = 152.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{152.5(152.5-120)(152.5-118)(152.5-67)}}{118}\normalsize = 64.8062953}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{152.5(152.5-120)(152.5-118)(152.5-67)}}{120}\normalsize = 63.7261904}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{152.5(152.5-120)(152.5-118)(152.5-67)}}{67}\normalsize = 114.13646}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 120, 118 и 67 равна 64.8062953
Высота треугольника опущенная с вершины A на сторону BC со сторонами 120, 118 и 67 равна 63.7261904
Высота треугольника опущенная с вершины C на сторону AB со сторонами 120, 118 и 67 равна 114.13646
Ссылка на результат
?n1=120&n2=118&n3=67
Найти высоту треугольника со сторонами 53, 49 и 23
Найти высоту треугольника со сторонами 122, 77 и 60
Найти высоту треугольника со сторонами 119, 95 и 39
Найти высоту треугольника со сторонами 107, 99 и 30
Найти высоту треугольника со сторонами 141, 120 и 118
Найти высоту треугольника со сторонами 95, 67 и 34
Найти высоту треугольника со сторонами 122, 77 и 60
Найти высоту треугольника со сторонами 119, 95 и 39
Найти высоту треугольника со сторонами 107, 99 и 30
Найти высоту треугольника со сторонами 141, 120 и 118
Найти высоту треугольника со сторонами 95, 67 и 34