Рассчитать высоту треугольника со сторонами 120, 67 и 55
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{120 + 67 + 55}{2}} \normalsize = 121}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{121(121-120)(121-67)(121-55)}}{67}\normalsize = 19.6027376}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{121(121-120)(121-67)(121-55)}}{120}\normalsize = 10.9448618}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{121(121-120)(121-67)(121-55)}}{55}\normalsize = 23.8796985}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 120, 67 и 55 равна 19.6027376
Высота треугольника опущенная с вершины A на сторону BC со сторонами 120, 67 и 55 равна 10.9448618
Высота треугольника опущенная с вершины C на сторону AB со сторонами 120, 67 и 55 равна 23.8796985
Ссылка на результат
?n1=120&n2=67&n3=55
Найти высоту треугольника со сторонами 132, 96 и 88
Найти высоту треугольника со сторонами 52, 46 и 36
Найти высоту треугольника со сторонами 141, 131 и 37
Найти высоту треугольника со сторонами 142, 141 и 23
Найти высоту треугольника со сторонами 117, 79 и 53
Найти высоту треугольника со сторонами 106, 78 и 63
Найти высоту треугольника со сторонами 52, 46 и 36
Найти высоту треугольника со сторонами 141, 131 и 37
Найти высоту треугольника со сторонами 142, 141 и 23
Найти высоту треугольника со сторонами 117, 79 и 53
Найти высоту треугольника со сторонами 106, 78 и 63