Рассчитать высоту треугольника со сторонами 120, 72 и 69
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{120 + 72 + 69}{2}} \normalsize = 130.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{130.5(130.5-120)(130.5-72)(130.5-69)}}{72}\normalsize = 61.6755308}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{130.5(130.5-120)(130.5-72)(130.5-69)}}{120}\normalsize = 37.0053185}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{130.5(130.5-120)(130.5-72)(130.5-69)}}{69}\normalsize = 64.3570756}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 120, 72 и 69 равна 61.6755308
Высота треугольника опущенная с вершины A на сторону BC со сторонами 120, 72 и 69 равна 37.0053185
Высота треугольника опущенная с вершины C на сторону AB со сторонами 120, 72 и 69 равна 64.3570756
Ссылка на результат
?n1=120&n2=72&n3=69
Найти высоту треугольника со сторонами 88, 59 и 44
Найти высоту треугольника со сторонами 140, 134 и 60
Найти высоту треугольника со сторонами 139, 123 и 84
Найти высоту треугольника со сторонами 122, 112 и 83
Найти высоту треугольника со сторонами 75, 50 и 34
Найти высоту треугольника со сторонами 123, 84 и 48
Найти высоту треугольника со сторонами 140, 134 и 60
Найти высоту треугольника со сторонами 139, 123 и 84
Найти высоту треугольника со сторонами 122, 112 и 83
Найти высоту треугольника со сторонами 75, 50 и 34
Найти высоту треугольника со сторонами 123, 84 и 48