Рассчитать высоту треугольника со сторонами 120, 83 и 61
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{120 + 83 + 61}{2}} \normalsize = 132}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{132(132-120)(132-83)(132-61)}}{83}\normalsize = 56.5661611}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{132(132-120)(132-83)(132-61)}}{120}\normalsize = 39.1249281}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{132(132-120)(132-83)(132-61)}}{61}\normalsize = 76.9670717}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 120, 83 и 61 равна 56.5661611
Высота треугольника опущенная с вершины A на сторону BC со сторонами 120, 83 и 61 равна 39.1249281
Высота треугольника опущенная с вершины C на сторону AB со сторонами 120, 83 и 61 равна 76.9670717
Ссылка на результат
?n1=120&n2=83&n3=61
Найти высоту треугольника со сторонами 140, 98 и 98
Найти высоту треугольника со сторонами 90, 61 и 42
Найти высоту треугольника со сторонами 100, 71 и 34
Найти высоту треугольника со сторонами 104, 100 и 57
Найти высоту треугольника со сторонами 126, 112 и 48
Найти высоту треугольника со сторонами 130, 94 и 39
Найти высоту треугольника со сторонами 90, 61 и 42
Найти высоту треугольника со сторонами 100, 71 и 34
Найти высоту треугольника со сторонами 104, 100 и 57
Найти высоту треугольника со сторонами 126, 112 и 48
Найти высоту треугольника со сторонами 130, 94 и 39