Рассчитать высоту треугольника со сторонами 120, 83 и 69
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{120 + 83 + 69}{2}} \normalsize = 136}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{136(136-120)(136-83)(136-69)}}{83}\normalsize = 66.9817801}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{136(136-120)(136-83)(136-69)}}{120}\normalsize = 46.3290646}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{136(136-120)(136-83)(136-69)}}{69}\normalsize = 80.5722862}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 120, 83 и 69 равна 66.9817801
Высота треугольника опущенная с вершины A на сторону BC со сторонами 120, 83 и 69 равна 46.3290646
Высота треугольника опущенная с вершины C на сторону AB со сторонами 120, 83 и 69 равна 80.5722862
Ссылка на результат
?n1=120&n2=83&n3=69
Найти высоту треугольника со сторонами 143, 124 и 59
Найти высоту треугольника со сторонами 97, 91 и 79
Найти высоту треугольника со сторонами 125, 97 и 42
Найти высоту треугольника со сторонами 113, 95 и 72
Найти высоту треугольника со сторонами 103, 70 и 37
Найти высоту треугольника со сторонами 129, 77 и 72
Найти высоту треугольника со сторонами 97, 91 и 79
Найти высоту треугольника со сторонами 125, 97 и 42
Найти высоту треугольника со сторонами 113, 95 и 72
Найти высоту треугольника со сторонами 103, 70 и 37
Найти высоту треугольника со сторонами 129, 77 и 72