Рассчитать высоту треугольника со сторонами 120, 85 и 47
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{120 + 85 + 47}{2}} \normalsize = 126}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{126(126-120)(126-85)(126-47)}}{85}\normalsize = 36.8194623}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{126(126-120)(126-85)(126-47)}}{120}\normalsize = 26.0804525}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{126(126-120)(126-85)(126-47)}}{47}\normalsize = 66.5883892}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 120, 85 и 47 равна 36.8194623
Высота треугольника опущенная с вершины A на сторону BC со сторонами 120, 85 и 47 равна 26.0804525
Высота треугольника опущенная с вершины C на сторону AB со сторонами 120, 85 и 47 равна 66.5883892
Ссылка на результат
?n1=120&n2=85&n3=47
Найти высоту треугольника со сторонами 147, 94 и 82
Найти высоту треугольника со сторонами 98, 83 и 49
Найти высоту треугольника со сторонами 76, 76 и 59
Найти высоту треугольника со сторонами 78, 60 и 48
Найти высоту треугольника со сторонами 75, 75 и 45
Найти высоту треугольника со сторонами 109, 89 и 27
Найти высоту треугольника со сторонами 98, 83 и 49
Найти высоту треугольника со сторонами 76, 76 и 59
Найти высоту треугольника со сторонами 78, 60 и 48
Найти высоту треугольника со сторонами 75, 75 и 45
Найти высоту треугольника со сторонами 109, 89 и 27